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INTRODUCTION

Federated Learning (FL) enables decentralized ML across clients without sharing raw data, vital

for privacy-sensitive domains.

Key FL challenges

Statistical heterogeneity (non-IID)

Privacy leakage

Communication overhead

Limitations of existing approaches

Quantum FL (QFL): Improved expressivity, lacks privacy/non-IID robustness [1]

Privacy-preserving techniques: Protects data but reduces utility or incurs overhead

Compression [2]: Efficient but ignores quantum or privacy synergy

AdeptHEQ-FL: A unified hybrid framework addressing all three concurrently.

Key Contributions

1. Differential Privacy (DP)-Weighted Adaptive Aggregation using client accuracies and

Homomorphic Encryption (HE) to effectively address non-IID data

2. Hybrid Classical-Quantum Architecture for model expressivity in federated settings

3. Efficient Dynamic Layer Sparing reduces communication overhead

4. Theoretical Convergence Analysis guarantee under all components

Framework Overview

Client: Trains CNN+PQC, adaptively freezes layers, encrypts final layer (CKKS)

Server: Aggregates encrypted layers using DP-weighted accuracy, sends global model
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Figure 1. Overview of the AdeptHEQ-FL framework.

Model Architecture

Classical Component: Convolutional Neural Network (CNN)

3 conv blocks (conv→ ReLU → maxpool)

Extracts local features, flattened to R2n

Quantum Component: Parametric Quantum Circuit (PQC)

4 qubits, 2-layer Strongly Entangling

Amplitude Encoding: |ψx〉 =
∑
xi|i〉

Rotation + CNOT gates, followed by Pauli-Z measurement

Outputs: fPQC(x) ∈ R4

Final Fully Connected Layer and Output

Fully connected layer (FC4): R4 → Rm
Overall: f (x; θ) = fFC4(fPQC(fCNN(x)))
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Figure 2. 4-qubit 2-layered PQC of AdeptHEQ-FL comprising amplitude embedding, two Strongly Entangling

Layers (parameterized Rz, Ry, Rz rotations), CNOT-based entanglement, and projective measurements. The

CNOT connectivity ensures full inter-qubit interaction within each layer.

Federated Learning Mechanisms

Accuracy-Weighted DPAggregation

Addresses the non-IID data by weighting client contributions

Each client privatizes their validation accuracy a
(t)
i using the Laplace mechanism:

ã
(t)
i = max(0,min(1, a(t)

i + ζ)), ζ ∼ Lap
(

∆i
ε

)
Total privacy loss over T = 20 rounds is bounded by: (εtotal, δ) = (10, 10−5)
Server computes aggregation weights w

(t)
i via a numerically stable tempered softmax

Global model is updated as: θ(t) =
∑

iw
(t)
i θ

(t)
i

Layer-Wise Adaptive Freezing

Layer score: s
(t)
l = ‖θ(t)

l − θ
(t−1)
l ‖2

Exponential moving average: s̄
(t)
l ; Freeze if s̄

(t)
l < 0.001

Quantum layers remain unfrozen for adaptability and expressivity

HE (CKKS scheme)

Only FC4 encrypted
Aggregation over encrypted vectors (multiplicative depth 3, ≈ 128-bit security)
Polynomial modulus degree: 8192, scale: 240

Results

Experimental Setup

FL: 10 clients, Dirichlet α = 0.1, 20 rounds, 10 local epochs
Optimizer: Adam (lr=1e-3), Batch: 32

DP: ε = 1.0/round, Aggregation: softmax τ = 0.5

Key Findings

Table 1. Performance comparisons of different models across three datasets are shown. The table displays the

average loss and accuracy in percentages for the models in our experiment across three different datasets. Each

metric is reported as the mean ± standard deviation, calculated over five experimental runs. Bold values indicate
the best performance in each dataset column.

Model nqubits nlayers
CIFAR10 SVHN FashionMNIST

Loss (↓) Accuracy (%) (↑) Loss (↓) Accuracy (%) (↑) Loss (↓) Accuracy (%) (↑)
Standard-FedQNN 6 6 1.503 ± 0.039 63.60 ± 0.45 0.349 ± 0.002 93.22 ± 0.05 0.313 ± 0.003 91.96 ± 0.09
FHE-FedQNN 6 6 1.972 ± 0.042 57.89 ± 0.20 0.340 ± 0.006 92.94 ± 0.14 0.328 ± 0.003 91.78 ± 0.11

AdeptHEQ-FL 4 2 1.306 ± 0.015 72.61 ± 0.33 0.362 ± 0.004 94.05 ± 0.10 0.340 ± 0.003 92.91 ± 0.12
AdeptHEQ-FL 4 1 1.667 ± 0.009 67.22 ± 0.18 0.331 ± 0.003 93.71 ± 0.12 0.339 ± 0.007 92.76 ± 0.04
AdeptHEQ-FL 2 1 1.640 ± 0.009 62.62 ± 0.42 0.526 ± 0.006 93.58 ± 0.09 0.385 ± 0.004 92.46 ± 0.13

AdeptHEQ-FL (4-qubit 2-layer) achieves highest accuracy across all datasets

Efficient & Resource Sensitivity: Fewer qubits/layers reduce performance, esp. for complex

data

Ablations confirm benefits of adaptive aggregation and layer freezing

Conclusion & FutureWork

Conclusion

AdeptHEQ-FL is a privacy-preserving, communication-efficient, and expressive hybrid FL

framework. It tackles non-IID challenges using DP-weighted aggregation, leverages hybrid

models, and reduces communication via adaptive freezing—all while maintaining convergence

guarantees and high accuracy.

Limitations & Future Work

HE currently on FC4 only→ Extend to full model

Simulations only→ Validate on quantum hardware

Assumes convexity in theory→ Extend for non-convex settings

Scale to larger, real-world datasets
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