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Why Distinguish Quark and Gluon Jets?

= Key for precision measurements & new physics at the LHC.
= Gluon jets: broader, higher multiplicity, softer p; due to larger color factor [1].
= Discrimination is challenging due to pileup and detector noise.

Limitations of CNNs

= CNNs excel at local features but struggle with long-range spatial dependencies.
= Often rely on handcrafted observables or full reconstruction pipelines.

Why Vision Transformers (ViTs)?

= Model global context via self-attention, capturing long-range spatial patterns.

= Naturally suited for end-to-end learning on multi-channel calorimeter images.

= Operate directly on detector-level energy deposits, bypassing reconstruction [2].
= Hypothesis: Vils better capture subtle jet substructure differences.

Dataset and Jet Image Construction

= Source: Simulated 2012 CMS Open Data (QCD Dijet events, 8 TeV, 933K labeled jets).
= Channels: 3-channel jet images from ECAL, HCAL, and Tracks — mapped in n-¢ space.

= I[mage Size: 125 x 125 pixels per jet; centered on the highest-energy HCAL tower.
= Selection Criteria: |n| < 1.57, pp > 70 GeV, AR < 0.4 to truth-level parton.
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(a) Single event visualization
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(b) Average per-pixel intensity distributions
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Figure 1. (a) Representative gluon (left) and quark (right) jet event across Tracks, ECAL, and HCAL channels. Log

scale is used for Tracks and ECAL; HCAL uses a linear scale. (b) Average per-pixel intensity maps over N = 10* gluon

and quark jets. Log scaling highlights dynamic range; colorbars show channel-wise intensities.

https://github.com/Abrar2652/particle reconstruction
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Preprocessing

= /ero suppression, Z-score normalization, clipping, sample-wise min-max scaling

= Augmentation: horizontal flips, random rotations, resized crops, color jitter
= ViTs: additional MixUp augmentation

Models Evaluated

= CNNs: ResNet50, EfficientNet-BO, ConvNeXt, RegNetY
* Transformers: ViT-Base, Swin Transformer, MaxViT, CoAtNet
= Hybrids: ViT+MaxVIT, ViT+ConvNeXt, ViT+Swin, ViT+Triple Ensemble

Training Setup

= Optimizer: AdamW, LR: 1 x 10~% (classifier), 1 x 1079 (frozen layers)
= LR scheduling: Cosine Annealing
= Batch size: 32, Epochs: max 20, Early stopping: 5 epochs
= Mixed-precision enabled

Results

Table 1. Performance comparison of benchmarked models on /k samples from the quark-gluon dataset. Results are
reported as mean = standard deviation over three runs with different random seeds. Bold indicates the best
performance, while underline marks the second-best result.

Model Accuracy (%) (1) Precision (%) (1) Recall (%) (1) F1 Score (%) (1) ROC-AUC (%) (T)\# Params (]) Train Time (}) Inference Time (ms) ({)
ViT + MaxViT 70.29 £0.0224 77.35 £ 0.0397 76.45 £+ 0.0613 72.02 + 0.0392 76.65 + 0.0287 236M 54m 41s 27611
ViT + ConvNeXt 70.57 £0.0354 72.67 £ 0.0477 7547 £0.0914 71.33 £0.0308 76.25 + 0.0304 28/M 34m 275 354.33
ViT + EfficientNet /70.00 £ 0.0186 /1.26 +0.0320 76.36 £0.0584 /0.75 £ 0.0241 /6.14 £ 0.0229 190.8M 1/m 8s 6/7.96
RegNetY 69.43 £ 0.0164 /1.30 & 0.0310 66.05 4+ 0.0508 68.58 £ 0.0200 /5.89 £ 0.0224 2.98M 10.41m 10.89
ViT + Swin 69.86 £ 0.0235 /443 +£0.041/ 80.93 £0.0/52 /1.27 £0.0380 /5.62 £0.0213 183M 2/m 325 44,74
ViT + RegNetY 69.79 £0.0148 /0.54 + 0.0343 69.85 £ 0.0616 70.19 £0.022/ /74.92 £0.0148 | 89.//M 24.0/m 169.11
ConvNexXt 6/.57 £0.0241 /2.93 £ 0.0308 /5.24 £ 0.059/ 70.33 £ 0.0401 /72.91 £0.02/6 89M 8m 50s 54.20
ViT + CoAtNet 66.79 £0.0113 6/.59 £ 0.0130 6/.87 £0.0402 6/.73 £0.0194 /1.79 £ 0.0108 0./9M /m 52s 20.21
ViT + ConvNeXt + Swin 66.64 + 0.0280 68.01 £ 0.02/5 78.32 £ 0.0492 69.09 + 0.0314 /1.11 + 0.0159 312M 1/m 45s 92.66
ViT 69.29 £ 0.0416 69.34 +0.0474 73.68 £ 0.0448 /70.09 £ 0.0150 69.28 £ 0.0419 85M 11.1m 55.52
Swin 69.29 £ 0.0555 69.36 £ 0.0547 84.92 £ 0.0559 70.93 £ 0.0390 69.28 £ 0.0557 8/M 23.3m 36.58
CoAtNet 61.29 £0.0238 66.83 + 0.0416 88.00 £ 0.1214 6/.26 £ 0.0619 66.65 £ 0.0285 82M 15m 30s 68.50
MaxViT 66.36 £ 0.0152 65.69 + 0.0186 /8.95 4+ 0.0549 69.29 £0.0210 66.34 £ 0.0153 119M 59.3m 141.63
ResNet 63.79 £0.0146 63.13 £ 0.0134 /4.82 £0.0/23 66.97 £0.0365 63.77 £0.0145 15M 5m 30s 103.15
EfficientNet 59.57 £0.0205 60.33 & 0.0225 57.33 £ 0.0361 58.57 £ 0.0252 59.58 + 0.0205 29M 6.1m 58.29
Sensitivity Analysis

1. Dataset Size: ViT retains 70.96% F1 score with only 60% training data

2. Model Size: ViT-Huge improves F1/Recall but with more compute

3. Batch Size: 64 yields best F1/Recall

4. Learning Rate: 5 x 102 optimal across all metrics

5. Optimizer: Lion > AdamW > RMSprop > SGD

6. Weight Decay: 0.01 achieves the best generalization

/. Epochs: F1 peaks after gradual unfreezing of ViT and MaxViT blocks

8. Dropout: 0.3 balances recall and precision well
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Figure 2. Ablation study summarizing the effect of key training and architectural hyperparameters on model
performance. Each subfigure isolates a single factor while holding others constant, illustrating its individual impact.

Conclusion & Future Work

Conclusion

ViT and ViT-CNN hybrid models establish new baselines for quark-gluon jet classification, outper-
forming traditional CNNs. Their ability to model global spatial dependencies through attention
mechanisms enables more effective exploitation of jet substructure. This work presents the first
public benchmark of ViTs on CMS calorimeter images in an end-to-end learning setting.

Future Directions

= Test on real experimental data.
= Optimize models for real-time use.
= Understand learned features physically.
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